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Numerical Simulation of Ion Acoustic Turbulence 

E. L. Lindman I 

Extensive simulation studies of ion acoustic turbulence carried out at the Max 
Planck Institute and at the Los Alamos National Laboratory are compared. 
Simulations of the B = 0 case carried out at the two laboratories agree when the 
Sagdeev scaling law without the Te/Ti dependence is used to compare them. 
Typical results are shown. The level of turbulence is found to be quite high in 
spite of the low anomalous collision frequency. The role of the "differential drift" 
distribution in these simulations is discussed extensively. 

KEY WORDS: Ion-acoustic waves; turbulence; plasma instability; plasma 
simulation; particle-in-cell calculation. 

1. I N T R O D U C T I O N  

Over the past 20 years considerable effort has been put into the study of 
ion acoustic turbulence I1-14) using plasma simulation techniques. (15) From 
this work much has been learned about numerical techniques for 
simulating collisionless plasma and ion acoustic turbulence. And, using the 
best of these techniques, considerable insight into certain aspects of ion 
acoustic turbulence have been gained. Nevertheless the numerical con- 
straints imposed by machines, even today, suggest that the results obtained 
from these techniques should be used with caution. Indeed, M. G. Haines 
suggests that a fully satisfactory simulation would take about 1000 days of 
CDC 7600 time. (16~ Many of us believe, however, that although such a 
calculation would be far more convincing, its results would be quite similar 
to the results already obtained. 

Perhaps the most comprehensive set of such calculations (4"5'7"9'~~ was 
carried out at the Max Planck Institute by Biskamp, Chodura, Dum, Von 
Hagenow, and Welter between 1970 and 1974. They performed two- and 
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three-dimensional simulations, using standard PIC techniques (15) with mass 
ratios between 100 and 1600. All possible orientations of the current with 
respect to B were done in two dimensions: B = 0; J parallel to B; J perpen- 
dicular to B with B out of the plane of the simulation; and J perpendicular 
to B with B in the plane of the simulation. The emphasis, however, was on 
the J perpendicular to B studies which apply to shock waves in magnetized 
plasmas. 

Then, in 1975, concern about possible effects on the penetration of the 
thermal wave in laser-pellet interaction experiments (Iv) led to an extensive 
study of the B = 0 case at Los Alamos by Forslund, Kindel, Lee, Lindman, 
and Morse. The primary result of these simulations was the lowest predic- 
ted anomalous resistivity of any theory or simulation at the time. As a 
result the work was not published until much later, (m and then only as 
part of a review paper. 

Theoretical calculations of the anomalous collision frequency have 
generally given values higher than those from simulation. An extensive 
review of the methods used, the results, and comparisons with simulation 
and experiment can be found in a comprehensive review paper by Hor ton  
and Choi3 ~8) In most such comparisons the cross-field simulations have 
been used exclusively. Here we will concentrate on the B = 0 case. 

2. C O M P A R I S O N  OF LOS A L A M O S  A N D  MPI  M E T H O D S  

In the Los Alamos simulations the trajectories of 7.2 x 105 ions and 
7.2 x 105 electrons were integrated in time using Newton's law: 

M)~ = Q(Eo-V~b) (1) 

At each time step the charge density was accumulated on a 64 x 64 mesh, 
whose dimensions were 322DX322D, using standard charge sharing 
methods./is) A discrete smoothing operation was then used to enhance the 
accuracy in the physically accurate region of k space and to reduce the fluc- 
tuations in the high-k region which is physically inaccurate and contributes 
to unwanted numerical collisions. The electrostatic potential corresponding 
to this charge density was then obtained on the mesh by solving Poisson's 
equation with periodic boundary conditions in both x and y: 

g2~ = -47z(Qin i + Qene) (2) 

An additional electric field which is constant in x and y was added to hold 
the total current constant in time. The instantaneous value of this electric 
field was determined by requiring that the s (m of the displacement current 
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and the total conduction current be equal to a fixed value, Jo, usually held 
constant in time. 

I~ 0 + 47r ~ Qv  = 47z3 o (3) 

As indicated above, the total conduction current is most easily obtained by 
summing the currents from all the particles in the system, ignoring their 
positions. This equation was then integrated in time to obtain Eo, and the 
combined electric field was then used to update the particle velocities using 
the standard force interpolation procedure. (~5) 

The simulations of Biskamp and Chodura (4'5~ were done in a similar 
manner with a few exceptions. First, they did not use the additional k-space 
smoothing mentioned above, and second, they used a slightly different 
procedure for maintaining constant current. Probably the most important 
differences were the use of a 128 x 128 mesh whose physical dimensions 
were 51.22~ by 51.22D and the use of only 2 x  105 ions and 
2 x 105 electrons. 

In particular, Biskamp and Chodura's choice of mesh parameters leads 
to a better k space coverage than ours. A comparison of the two, in Fig. 1, 
shows 1.6 times as many k's per unit length in k space for the MPI 
parameters compared to the Los Alamos runs, and 2.56 times as many per 
unit area. Although no one has done a careful calculation of the effects of 
discrete modes on ion acoustic turbulence, there is considerable concern 
that discreteness in k space may lead to nonnegligible errors. If so, more 
closely spaced k's should give a more accurate result. 
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Fig. 1. Mode structure in simulations compared to initial growth rates. The discrete k values 
in the simulations occur at the intersections of the horizontal and vertical lines. For the Los 
Alamos simulations (a) the parameters are VD/VTe=0.5, Mi/Me= 100, Ti/Te=O.O1, N:,= 
.IVy = 64, Ax = Ay = 0.52D; and for the MPI simulations (b) the parameters are: Vo/Vx~ = 1.0, 
MJM~= 100, T i r e = 0 . 0 2  , Nx=Ny= 128, Ax=Ay=O.42D. 
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On the other hand our choice of parameters leads to a substantially 
reduced collision frequency. Using the formulas given by Okuda and 
Birdsall (19) we may estimate the numerical collision frequencies in the two 
cases. For  the Max Planck Institute, 

v c(c 0 1 0.5 (51.2) 2 

COpe 16 n,~2D 16 2 X 10 5 
- -  = 4  x 1 0 - 4  ( 4 )  

and for Los Alamos, 

v c(~) 1 

cop~ 16 n2~ 
0.1 (32) 2 = 9 x 10 -6 
16 7 x l0 s 

(5) 

These estimates may be verified by looking at the diagnostic that measures 
resistance early in the runs before the turbulence builds up. The Los 
Mamos value is quite negligible compared to the measured anomalous 
resistance value, whereas the MPI  value is not negligible at late times. It 
has been argued that accurate anomalous collision frequencies could not be 
obtained from these calculations at late times for this reason. 

Questions as to which approach gave the better answer are irrelevant, 
however, since the results of the two approaches will be shown to be essen- 
tially the same. This conclusion is an important one since it lends credence 
to calculations which use less computer time and shows that varying the 
discreteness does not affect the result. The unlikely situation in which the 
two effects canceled will be dealt with in a future paper. 

4. T Y P I C A L  RESULTS FOR THE B = 0  CASE 

The energy in the electric field normalized to the initial particle energy 
is shown in Fig. 2a. Because of the low initial fluctuation level, the energy 
in the field rises more than two decades before saturating. After saturation 
the field energy drops slowly. Similar data for the MPI  calculations is 
shown in Fig. 2a of Ref. 5. 'Because of the higher noise level in the MPI  
calculation the field energy rises only one one decade before saturating at a 
value approximately twice that shown in Fig. 2. The difference in the 
saturation levels results from our choice of an electron drift velocity of 1/2 
the thermal speed instead of Biskamp's choice of V D / V T e  = 1. 

A similar factor of 2 is seen in the comparison of the anomalous 
resistance caused by the turbulence in the two calculations. This resistance 
can be obtained directly by monitoring the spatially constant (k = 0) com- 
ponent of the electric field required to keep the current constant. A plot of 
this field strength as a function of time<,is shown in Fig. 2b. Large- 
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Fig. 2, Electric field energy density and anomalous collision frequency as a function of time. 
The energy in the electrostatic field of the ion acoustic waves normalized to the initial particle 
energy density is plotted for the duration of the simulation run in (a). The k = 0 electric field 
required to hold the total current constant is plotted vs. time in (b). The high-frequency 
oscillations are plasma oscillations. The time average part of the curve is a direct measure of 
the anomalous collision frequency experienced by the electrons as they move through the ion 
acoustic turbulence. 

ampl i tude  p lasma oscillations are seen super imposed On the field strength 
that  varies with the resistivity. The p lasma oscillations appear  quite large 
here but  the oscillating velocity of the electrons in them is small compared  

to their drift velocity, and  hence they are un impor tan t .  A detailed com- 
par ison of the collision frequel~cies seen in the two calculat ion will be 
presented later. 

8 2 2 / 3 9 / 5 - 6 - 2 1  
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Fig. 3. Density fluctuations in real space. The ion density at (;Opel = 1500 is plotted as a 
function of x and y in (a); and a contour  plot of similar data slightly displaced in time is 
presented in (b). The ion density ranges from 6n/n = -0 .4  to +0.9 with an rms value of 0.25 
at which time it is at the peak of the turbulence level. 

The rms value of the ion density fluctuations, fin~n, follows a curve 
qualitatively similar to that of the electric field energy in time. Near the 
peak of the curve, at Opel------1500, a r m s  value of about 0.25 is obtained. At 
the same time a maximum value of 0,9 and a minimum value of - 0 . 4  is 
seen. The fluctuation pattern corresponding to these data is shown in 
Fig. 3, and the wave spectrum is shown in Fig. 4. The spectrum is centered 
on the region in k space of maximum growth, kx2D~0.7 ,  as expected. 
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Fig. 4. Density fluctuations in k space. The absolute value of the Fourier transform of the 
density fluctuations is plotted as a function of k x and ky at corot = 1500. The peak of the spec- 
t rum occurs near kx2o = 0.7 which is consistent with the linear growth rate curves given in 

Fig. la. 
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The amplitudes of the ion density fluctuations in this simulation 
suggest that nonlinear wave effects may be important. The fact that the 
density minima tend to be broad while the density maxima tend to be 
sharp lends further support to this supposition. Although an expansion of 
the turbulence in plane waves predicts many of the observed effects, it may 
be that an expansion in terms of solitons, for instance, might prove 
superior. Certainly, much progress has been made recently in Langmuir 
turbulence using this approach. 

Perhaps, the most important effect in the saturation of the instability 
is ion trapping as noted by Biskamp and Chodura. They included plots of 
the ion distriution function in their early work which shows the high- 
energy "tail" generated by this effect (Fig. 8 of Ref. 5). Figure 5 shows the 
same effect obtained in the Los Alamos simulation. 

The hot ion "tail" is caused by the two-dimensional equivalence of 
wave breaking or trapping. The collection of waves previously discussed as 
ion density perturbations were generated by the ion acoustic instability in a 
cone of angles centered on the x axis. The interaction of these waves creates 
density structures moving at a wide variety of speeds and angles. These 
structures are capable of accelerating particles to high velocities in much 
the same way that particles are accelerated in wave breaking or trapping 
models. The distribution generated extends out to 2Cs in the x direction 
and almost as far in y. The deformation of the "bulk" ions is caused by the 
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Fig. 5. Ion velocity distribution. The distribution of x velocities of the ions at O3pet ~ 0 and 
~Opet = 2400 is plotted. The hot ion tail is barely visible in the linear plot. The log-linear plot of 
the same data shows it quite clearly. The distribution of y velocities is also shown at 
equivalent times. The hot ion tail is visible here also and extends out to Vy = • 
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wave motion plus conservation of momentum for the ions as a whole dur- 
ing the formation of the hot "tail." 

The distribution function of the electrons is also deformed but in a dif- 
ferent way. This effect is shown in Fig. 6 (and in Fig. 7 of Ref. 5). At t = 0 
the electron distribution was initialized as a Maxwellian centered on the 
drift velocity. As the ion acoustic waves grow the electric fields associated 
with them scatter the electrons more effectively. Interestingly enough the 
velocity dependence of the scattering by these turbulent fields is exactly the 
same as that for Coulomb scattering. Thus we may analyze the effect on the 
distribution function of the scattering by these fields in exactly the same 
way as we analyze a distribution of electrons being dragged through a 
collection of Coulomb scattering centers (2~ with velocities large compared 
to the scattering-center velocities. To lowest order the electron distribution 
should be at rest in the scattering-center frame. The effect of the applied 
k = 0 field, Eo, however, is to drag the electrons through the scattering cen- 
ters at a rate required to maintain the desire current. Assuming a zero- 
order stationary Maxwellian we have 

/ = f o + f ~  (6) 

f0 = no(2~) -3/2 Va~ e x p [ -  V2/(2~e)] (7) 

f l  - eEo Ofo (8) 
mv OVx 

W pet = 0 COpet = 500 

-5 Vx/VTe 5 -5 Vx/VTe 

COpet = 2400 

5 -5 Vx/VTe 5 

-5 V y / V T e  5 -5 V y / V T e  
I 
5 -5 

t [ r 

VylVTe 

Fig. 6. Electron velocity distribution. The distribution of x velocities of the electrons at 
various times are shown. The initialized drifting Maxwellian is seen at ~ove t = 0. At COpe t = 200 
approximate "plateau" formation for 0 ~< Vx ~< C= is seen. At late times the distribution 
becomes a differential mobility distribution with a maximum at approximately 0.3 V d. In the y 
direction some heating is observed at late times. 
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To include the velocity dependence of v, it is convenient to rewrite it as 
follows: 

v = Vo( V3JV 3) (9) 

If we now let V0 = -eEo/(mvo), the electron density, the current, and f (Vx)  
may be computed from the distribution function as follows: 

n --no (10) 

J= -neVa= 16 noeV o (13) 

f(Vx)= 2~ f~ V• dV• f(Va, Vx) (32) 

f(Vx) = (2~z) 1/2 Vs e x p [ -  V2~/(21~x~)] 

v~ - 

x 3 + 2WXe U 3, 2 2 1 ~ T j j  (33) 

where U(a, b; x) is a confluent hypergeometric function. (2~ Using the small 
argument expansion, 

U(a, b; x )  - F (b  - 3 ) x l - b  -t- O([X] b -  2) (14) 
V(a) 

we may obtain an approximate expression for f (Vx)  for I Vx] < VTe: 

f(Vx)~(2rc)'/zvTeln~ +(2iT~Vvre 3~i/22 

(35) 

And the maximum of this distribution is located at 

V x = V~,= 3 V 0 (16) 

which is less than drift velocity, Vd, of the original Maxwellian carrying the 
same current by a factor of ~0.3: 

V' - 3~1/2 
d--55- vd-~0.3v~ (17) 

All the electrons are being dragged through the scattering centers by 
the same field, but the more energetic electrons have a weaker interaction 
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with the waves and, hence, drift faster. This differential mobility leads to the 
skewed distribution function shown in Fig. 5. Since the more energetic elec- 
trons are more mobile they carry more than their share of the current. The 
colder ones are less mobile and carry less current. As a result, the 
maximum in the distribution occurs at an x velocity which is smaller than 
that for a drifting Maxwellian carrying the same current. It is interesting to 
note that the shape of the distribution is not a function of the level of the 
turbulence in a constant current situation. The current is proportional to 
Vo which is proportional to Eo/v o. Thus as Vo rises, Eo rises with it to keep 
the current and, hence, Vo constant. Since the distribution function is a 
function of Vo only through Vo, it is independent of the turbulence level. 

Therefore, there is a canonical distribution function that should be 
used in simulations of ion acoustic turbulence for B = 0. The simulations 
done in the past were initialized with a drifting Maxwellian with all 
simulation parameters chosen to put the unstable k spectrum in the 
optimum location in k space. As the distribution function changed, 
however, the unstable modes were no longer located at the optimum and 
questionable results have been obtained for late times. In future simulations 
the differential-mobility distribution function for the electrons should be 
used in place of the drifting Maxwellian. 

4. P A R A M E T R I C  DEPENDENCIES 

In order to compare the results of a number of dissimilar experiments 
or, in our case, simulations, it is convenient to compare to a scaling for- 
mula. Perhaps the best known of these is that proposed by R. Z. Sagdeev: 

V* V d Te /me~ TM 

~0 p----~ = c~ VT-----~ T---~ ~ m-~J (18) 

A number of simulations have been done at the Max Planck Institute and 
Los Alamos to check the dependences indicated above. Figure 7 shows the 
data that were originally published in the review article, Ref. 11. The 1/4 
power dependence on the mass ratio is well established from these data, 
and Ref. 5 contains a table of data which also supports it. The two points 
at different temperature ratios and the same mass ratio appear to support 
the linear scaling with T/Ti. The conclusion is probably incorrect, 
however. Since the value of the electron temperature determines both the 
Debye length and, with the mass ratio, the sound speed, the temperature 
ratio is varied by varying the ion temperature, Ti. For T~/Te<O.05 the 
linear dispersion relation for unstable ion acoustic waves goes to the cold 
ion limit. Thus from linear theory we expect no Te/T~ scaling for Te/Ti~20. 
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Fig. 7. Anomalous  collision frequency vs. mass  ratio. Anomalous  collision frequencies are 
taken from simulations using mass  ratios of 100, 400, and 1600. The (MIMe)-1/4 dependence 
is clearly established. The point at MIMe= 100 and T]Te=9 x 10 2 shows a substantial 
decrease in anomalous  collision frequency for warm ions. 

The condition for ion trapping behaves similarly. It is dependent on the ion 
thermal velocity divided by the wave speed, (T]mi)l/2(m]Te) 1/2. Thus, for 
TIT e ~ 1, the ion temperature drops out of the ion-trapping condition. 

Thus in the range 20 ~ Te/Ti<~ oe, the linear scaling given above is 
questionable and, in fact, no scaling with temperature in the cold ion limit 
is probably correct. For Te/Ti <~ 20 a much stronger dependence on TJT~ is 
expected consistent with the data shown in Fig. 5. 

No one has published simulation data which verify the VJ VT~ scaling. 
On the other hand the simulations published by the MPI group were all 
done at Vd/VTe= 1, whereas the work at Los Alamos was done at 
Vd/VT~ = 0.5. Comparison of the results obtained at the two Laboratories 
may be used to check this scaling provided other differences, such as the 
number of particles used in the simulations, etc., can be neglected. Such a 
comparison is presented in Table I. 

For the B = 0 case, agreement between the Los Alamos and the Max 
Planck results is quite good, if the T~/Ti scaling in the Sagdeev scaling law 
is suppressed, as we have argued it should be for T~/T~> 20. In order to 
make this comparison it was assumed that the observed collision frequency 
in each simulation was simply the sum of the numerical collision frequency 
plus the anomalous collision frequency, and, hence the numerical collision 
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frequency could be conveniently subtracted out. Since a steady state 
collision frequency is of most interest, the values were taken at late times in 
the simulations. The collision frequencies were still dropping at this time; 
hence, these values are at best upper bounds. Failure to set up the 
problems consistent with a differential-mobility electron distribution also 
casts doubt on the late time results. Nevertheless the simulations predict a 
very low anomalous collision frequency for the B = 0 case. 

When the current is maintained by causing the electrons to drift across 
a magnetic field, much stronger anomalous collision frequencies are 
obtained. In a two-dimensional simulation there are two ways to cause the 
electrons to E x B drift in the x direction. Both of them give higher 
anomalous collision frequencies than the J parallel to B case as shown in 
Table I. Where the mass ratio dependence has been determined it is no 
longer (mi/mJ/4. Furthermore, these cases give significantly different 
values for the anomalous resistance. Much of the confusion over the 
anomalous collision frequency associated with ion acoustic turbulence has 
occurred because of a desire to place all these cases in the same category. 

5. C O N C L U S I O N  

The earliest in-depth simulation studies of ion acoustic turbulence 
were carried out by Biskamp, Chodura, Dum, Von Hagenow, and Welter 
between 1970 and 1974. The more recent simulation studies at Los Alamos 
by Forslund, Kindel, Lee, Lindman, and Morse appeared to disagree with 
the earlier work. The alleged discrepancy arose because ( 1 ) B = 0  
simulations at Los Alamos were compared with E • B driven simulations of 
MPI  and (2) the Te/T i factor was retained in the scaling law in spite of the 
fact that both sets of simulations were done in the cold-ion limit. When 
only B = 0 simulations are compared and a scaling law is used that has no 
Te/Ti factor, excellent agreement is obtained. 

In spite of the low anomalous collision frequencies, the turbulence 
levels in these simulations are quite high. Root mean square density fluc- 
tuations as high as 0.25 are seen. Although an expansion of the turbulence 
in plane waves predicts many of the observed effects, an expansion in terms 
of nonlinear waves, such as ion acoustic solitons, might prove superior. 

In constant-current, B = 0 simulations there is a characteristic shape 
for the electron distribution which is different from a drifting Maxwellian. 
The simulations discussed here were initialized with drifting Maxwellians in 
such a way that the unstable spectrum was optimally located in the k space 
available. When the electron distribution deformed into the "differential 
mobility" distribution, the location of the unstable spectrum was no longer 
optimal. Late time results are therefore questionable. 
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In future work we plan to reevaluate the Te/Ti scaling and the Vd/VTe 
scaling to check the conclusions presented here. The unstable spectrum for 
"differential mobility" distributions will be calculated, and such dis- 
tributions will be used in these simulations. 
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